

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2016)

PROVA DE MATEMÁTICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 35 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- Para cada pergunta existem quatro alternativas de resposta. Só uma é que está correcta. Assinale apenas a alternativa correcta.
- 4. Para responder correctamente, basta marcar na alternativa escolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- No fim da prova, entregue apenas a Folha de Respostas. Não será aceite qualquer folha adicional.
- 7. Não é permitido o uso de máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

PROVA DE MATEMÁTICA

Álgebra

1.	No parque de estacionamento em frente duma escola estão 17 veículos, entre bicicletas e
	automóveis. Contaram-se ao todo 56 rodas. Quantas bicicletas e quantos automóveis há
	no parque?

A. 10 bicicletas e 7 automóveis;

C) 7 bicicletas e 10 automóveis;

B. 11 bicicletas e 6 automóveis;

D) 11 automóveis e 6 bicicletas.

2. Quatro planos de telefonia celular são apresentados na tabela abaixo:

Plano	Custo fixo mensal (USD)	Custo adicional/minuto (USD)
X	35,00	0,50
Y	20,00	0,90
Z	0,00	1,80
W	15.00	1,50

O melhor plano para alguém que fale 100 minutos por mês é:

A. X;

B. Y:

C. Z:

D. W.

3. Sejam, A e B, dois bairros de uma cidade. O bairro A tem 1000 residências, sendo o consumo médio mensal de energia eléctrica por residência 250 kwh. Já o bairro B possui 1500 residências, sendo o consumo médio mensal por residência igual a 300 kwh. O consumo médio mensal de energia eléctrica por residência, considerando os dois bairros, A e B, é

A) 275 kwh;

B) 280 kwh;

C) 287,5 kwh;

D) 292,5 kwh.

4. Para se apurar o vencedor de um campeonato, o regulamento estipula que cada um deles enfrente todos os outros uma única vez. Sendo 10 o número de equipas, o número total dos jogos é:

A. 105;

B. 90:

C. 45:

D. 100.

5. Um número inteiro é escolhido aleatoriamente dentre os números 1, 2, 3, ..., 50. A probabilidade de ser primo é:

A. $\frac{3}{10}$;

B. $\frac{6}{25}$;

C. $\frac{2}{5}$;

D. $\frac{1}{5}$.

6. Dois indivíduos formaram uma empresa. O primeiro entrou com 1000 milhões de meticais e o segundo com 600 milhões. Para dividir o lucro de 112 milhões em proporção das entradas cada um teve respectivamente direito a.

A. 70 milhões e 42 milhões;

C. 80 milhões e 40 milhões;

B. 75 milhões e 42 milhões;

D. 82 milhões e 40 milhões.

7. Racionalizando o denominador da fracção
$$\frac{1}{\sqrt{2} + \sqrt{3} + \sqrt{5}}$$
, obtêm-se:

A. Não é possível:

C. $\frac{\sqrt{5} + \sqrt{2} + 4\sqrt{3}}{7}$;

B. $\frac{2\sqrt{3}+3\sqrt{2}-\sqrt{30}}{12}$;

D. $\frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{5}$.

8. Os valores de x que dão sentido à expressão $\frac{\sqrt{1-x}}{2-|x+2|} > x \in R$, são:

A. $[1; +\infty]$:

C. [0;1];

B. $R \setminus \{-2\}$:

D. $]-\infty;-4[\cup]-4;0[\cup]0;1].$

9. O polinómio $x^2 - ax + 1$

- A) tem sempre duas raízes reais, qualquer que seja o valor de a;
- B) tem sempre uma raiz real, qualquer que seja o valor de a;
- C) tem exactamente uma raiz real para $a = \pm 2$;
- **D)** tem exactamente uma raiz real para a = 0.

10. O valor de n que torna a sequência 2+3n, -5n, 1-4n uma Progressão Aritmética pertence ao intervalo:

- A. [-2;-1];
- **B.** [-1;0];
- **C.** [0:1]:
- **D.** [2;3].

11. O resto da divisão de $x^3 - 4x + 2$ por x + 2 é:

A. -3;

- C. 1;

12. Para que o seguinte sistema seja possível e determinado $\begin{cases} x - y = 1 \\ x - ay + z = b \end{cases}$, então:

- A. a = b = 1:
- **B.** $a \ne 1, b \in R$; **C.** $a \in R, b = 1$;
- **D.** $a \neq b$.

13. Observe esta sequência de figuras ao lado. A figura a seguir será:

14. A solução da inequação $x^2 - 9 \le 0$ é:

- A. $x \in [-3, 3]$:

- **B.** $x_1 = 3 \lor x_2 = -3$; **C.** $x \le \pm 3$; **D.** $x \in]-\infty, -3[\cup] 3, +\infty[$.

15. A equação $\sqrt{3\sqrt{3}} = \left(\frac{1}{\sqrt{3}}\right)^x$, tem como solução:

A.
$$x = \frac{1}{3}$$

A.
$$x = \frac{1}{3}$$
; **B.** $x = -\frac{3}{2}$; **C.** $x = \sqrt{3}$;

C.
$$x = \sqrt{3}$$
;

D.
$$x = 7$$
.

Análise Matemática

16. A equação da recta tangente à função $f(x) = x + \frac{1}{x}$, no ponto (1, 2) é:

A.
$$y = x^2 + 1$$
;

B.
$$v = 2$$
;

C.
$$y = 4x + 3$$
;

D.
$$y = 2x - 1$$
.

17. Considere o gráfico de f(x) ao lado. A inequação f(x) > -2 tem solução:

A.
$$x < -2$$
;

C)
$$-1 < x < 2$$
;

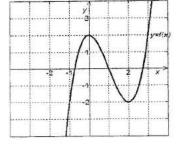
B.
$$x < 1$$
;

D)
$$x \ge -1 \land x \ne 2$$
.

18. O valor de k para o qual a função $y = x^2 - 5x + k$, admite mínimo $-\frac{1}{4}$ é:

C.
$$k = -25$$
;

B.
$$k = -3$$
;



19. O domínio da função $f(x) = \begin{cases} x+2 & se & x \le -1 \\ x^2 & se & x > -1 \end{cases}$ é:

A.
$$[2,+8[;$$

B.
$$[-2,0[$$
;

D.
$$0 \le x < 2$$
.

20. Dada a função $f(x) = \frac{x-3}{x-2}$, o $\lim_{x\to 2^+} f(x)$ é:

$$D. -1.$$

21. Considere a função $f: R \to R$, $f(\alpha) = 4\cos(\alpha) + 3\sin(\alpha) - l$. A derivada da função f tem

A.
$$f'(\alpha) = 4\operatorname{sen}(\alpha) - 3\cos(\alpha) - 1$$
;

C.
$$f'(\alpha) = -4\operatorname{sen}(\alpha) + 3\cos(\alpha)$$
;

B.
$$f'(\alpha) = 4\operatorname{sen}(\alpha) - 3\operatorname{cos}(\alpha)$$
;

C.
$$f'(\alpha) = -4\operatorname{sen}(\alpha) + 3\cos(\alpha)$$
;
D. $f'(\alpha) = -4\operatorname{sen}(\alpha) + 3\cos(\alpha) - 1$.

- 22. O valor máximo da função $f: R \to R$, $f(\alpha) = 4\cos(\alpha) + 3\sin(\alpha) 1$, ou seja, o maior valor das imagens $f(\alpha)$ é igual a:
 - A. 5;

- B. 4;
- C. 3;
- D. 2.

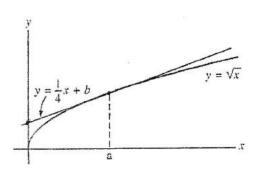
- 23. O valor de $\lim x \ln x$ é:
 - **A.** 0;

- B. 1;
- C. e^3 :
- **D.** ln 3.

24. Na figura abaixo, a recta $y = \frac{1}{4}x + b$ é tangente ao

gráfico $y = \sqrt{x}$. Os valores de a e b são respectivamente.

- A. 4 e 1;
- B. 1 e 2;
- C. 1 e 4;
- D. 2 e 4;



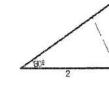
- 25. Um projectil é lançado verticalmente de baixo para cima. Admita que sua altitude h em metros, t segundos após ter sido lançado, é dada pela expressão $h(t) = 100t - 5t^2$. A velocidade (em metros por segundo) do projéctil dois segundos após o lançamento é:
 - A) 80;

B) 130:

- C) 170:
- D) 230.

Geometria

- 26. Tomando $\sqrt{3} = 1.7$ a área do triângulo da figura ao lado é igual a
 - A) 1,15;
- B) 1.30;
- **C**) 1,35;
- 27. Considere no plano xy as rectas y=1, y=2x-5 e x-2y+5=0. As coordenadas dos vértices do triângulo formado por essas rectas são:



A. (3;1), (-3;1), (5;5);

C. (0;-3), $(\frac{1}{3};7)$, $(2;\frac{1}{5})$;

B. (1;3), (5;6), (-2;3);

- **D.** (5;2), (-1;7), $(\frac{1}{2};3)$.
- 28. Um círculo de raio r está inscrito em um triângulo ABC. Se $\overline{AC} = 6cm$, $\overline{AB} = 10cm$ e $\overline{BC} = 12cm$ Então, a área da região interior ao triângulo e exterior ao círculo é igual a:
 - A. $\frac{8(7\sqrt{14}+4\pi)}{7}cm^2$;

C. $\frac{32\pi}{7}$ cm²;

B. $\frac{8(7\sqrt{14}-4\pi)}{7}cm^2$;

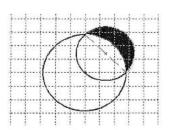
- **D.** $\frac{8(7\sqrt{14}-5\pi)}{7}cm^2$.
- 29. A distância do ponto P(-2;3) à recta de equação y = 2x + 7 é:
 - A. 0;
- B. $\frac{3}{2}$; C. $\frac{6}{\sqrt{13}}$;
- **D**. $-\frac{3}{2}$.

30. Um círculo de raio $2 \cdot \sqrt{2}$ tem o seu centro numa circunferência de raio 2, veja figura: a circunferência grande tem raio $2\sqrt{2}$ e a circunferência menor tem raio 2.

Qual é a área pintada da parte do menor círculo que está fora do grande círculo?

$$\mathbf{B}.\sqrt{2}\cdot\boldsymbol{\pi};$$

$$\mathbf{C}.\ \frac{5}{4}\pi$$
;



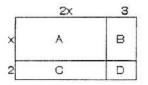
31. Considere o rectângulo ao lado. Uma expressão para a área total deste rectângulo em função de x é:

A.
$$2x^2 + 7x + 6$$
;

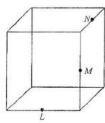
C.
$$2x + 3 + x + 2$$
;

B.
$$2x^2 + 6$$
;

D.
$$2x^2 + 5x + 6$$
.



32. Os pontos L, M e N são pontos médios de arestas do cubo, como mostra a figura ao lado. Quanto mede o ângulo LMN?



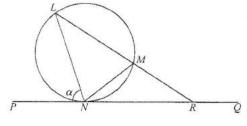
33. Na figura ao lado, a recta PQ toca em N o círculo que passa por L, M e N. A recta LM corta a recta PQ em R. Se LM = LN e a medida do ângulo PNLé α , $\alpha > 60^{\circ}$, quanto mede o ângulo *LRP*?

A.
$$3\alpha - 180^{\circ}$$
;

C.
$$180^{\circ} - \alpha$$
:

B.
$$180^{\circ} - 2\alpha$$
;

D.
$$90^{\circ} - \alpha/2$$
.



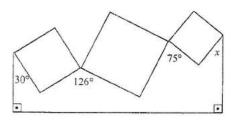
34. Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais, como mostra a figura ao lado.

Qual a medida do ângulo x?

A. 39°:

B. 41°;

C. 44°; D. 46°.



- 35. O quadrilátero ABCD é um quadrado de área $4 m^2$. Os pontos $M \in N$ estão no meio dos lados a que pertencem. Podemos afirmar que a área do triângulo em destaque é, em m2,
 - A. 1,5;
- B. 2;
- C. 2,5;
- D. 3.

