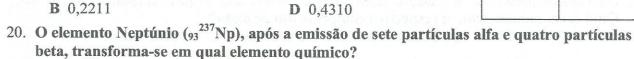


República de Moçambique Ministério da Educação e Desenvolvimento Humano Instituto Nacional de Exames, Certificação e Equivalências

ES	G	1	2	01	9
12ª	C	1:	15	SE	4


Exame de Física

Extraordinário 120 Minutos

Este exame contém quarenta (40) perguntas com 4 alternativas de resposta cada uma. Escolha a alternativa correcta e RISQUE a letra correspondente na sua folha de respostas.

1.	Aquecem-se 240 g de água (calor específico igual a 1 cal/g°C) pela absorção de 200 W de potência na forma de calor. Qual é, em minutos, o intervalo de tempo necessário para essa quantidade de água variar sua a temperatura em 50 °C? (Considerando 1 cal = 4 J)
	A 1 B 2 C 3 D 4
2.	Qual é, em Angstroms, o comprimento de onda máximo para um corpo negro que foi aquecido a 5000 K? (b=3.10 ⁻³ SI) A 2000 B 4000 C 6000 D 8000
3.	A figura mostra a intensidade das ondas electromagnéticas emitidas por um corpo negro a certa temperatura em função da frequência. Qual é, em Kelvin, a temperatura desse corpo negro? (C= 300 000 km/s, b=3.10 ⁻³ SI) A 750 C 1000 D 1200 R 2 1.5 0.5 0.85 2,0 f(10 ¹⁴ Hz
4.	Qual é a razão $\frac{\lambda_1}{\lambda_2}$ entre os comprimentos de onda de emissão máximos de dois corpos
	negros que se encontram a temperaturas $T_1 = 2000 \text{K}$ e $T_2 = 6000 \text{ K}$?
	A 1/4 B 1/2 C 2 D 3
5.	Se a temperatura absoluta de um corpo negro for quadruplicada, a sua taxa de radiação de energia térmica aumentará vezes. A 4 B 16 C 100 D 256
6.	Qual é, em eV, a energia de um fotão de frequência igual a 2×10^{14} Hz? (h = 6.6×10^{-34} J!s)
	A 0,4 B 0,6 C 0,8 D 0,9
7.	A energia necessária para remover um electrão do Sódio metálico é 2,28 eV. Qual é, em nanómetros o comprimento de onda do limiar fotoelétrico do sódio ? (h = 4,14.10 ⁻¹⁵ eV.s , c=300 000 km/s) A 245 B 320 C 450 D 545
8.	O espectro electromagnético é dividido em regiões onde se agrupam ondas electromagnéticas em faixas de energia específicas. Não faz parte do espectro eletromagnético a A luz visível C radiação gama
	B ondas de rádio D radiação alfa
9.	
10.	Uma determinada onda de radiação electro magnética tem uma frequência igual a 1,5×10 ¹⁴ Hz. Qual é, em nanómetros, o respectivo comprimento de onda?
	A 1000 B 2000 C 3000 D 4000

No gráfico a seguir, representamos a variação da energia cinética 11. E_{cmáx}(eV) máxima dos electrões emitidos por um metal, em função da frequência da radiação incidente. Qual é, em 1014 Hz, a frequência limiar do $(h = 4.14.10^{-15} \text{ eV})$ metal? A 0,0 C 5,5 f(10¹⁴ Hz) Hz) 5.5 B 2,28 **D** 6,1 12. Um electrão do átomo de hidrogénio, realiza a transição mostrada na figura. Qual é, em eV, a energia absorvida nessa transição? Energia(eV) $(h = 4.14.10^{-15} \text{ eV.s})$ A 3.4 C 13.6 **B** 10.2 D 17.0 13. Um aparelho de raio X funciona com uma tensão de 95 kV para aceleração dos electrões emitidos por um cátodo. Suponha que os electrões são emitidos com energia cinética inicial desprezível. Qual é, em Angstroms, o comprimento de onda mínimo dos raios X produzidos por esse aparelho? ($h = 4.14.10^{-15} \text{ eV.s}$, $e = 1.6 \times 10^{-19} \text{ C}$, c = 300 000 km/s) **A** 0, 13 **B** 1.3 C 13 130 14. Quanto tempo levará para que, uma amostra radioactiva de 28 gramas e de período de semidesintegração 17 horas, fique reduzida a 1,75 gramas? **B** 34 A 17 C D 128 15. Qual é, em em Megajoules, a quantidade de energia que pode ser obtida a partir da conversão de 10 g de massa? A 2.10^{8} 12.10^8 16. Considere a seguinte equação de transmutação nuclear: Os números atómico e de massa do elemento X são, respectivamente. A 114 e 279 **B** 106 e 263 C 102 e 267 17. Qual dos processos abaixo representa um processo de produção de lixo radioativo, ou seja, uma fissão nuclear? $C_{92}U^{235} \rightarrow {}_{2}\alpha^4 + {}_{90}Th^{231}$ $A_1H^2 + {}_1H^3 \rightarrow {}_2He^4 + {}_0n^1$ **B** $_{7}N^{14} + _{1}H^{1} \rightarrow _{6}C^{12} + _{2}He^{4}$ $D_{92}U^{235} + {}_{0}n^{1} \rightarrow {}_{38}Sr^{95} + {}_{54}Xe^{139} + 2{}_{0}n^{1}$ 18. A figura representa a actividade de uma amostra radioativa em função do tempo. Quantos anos são necessários para que a actividade da amosta fique reduzida a 4Bq? 512 A 80 **B** 120 C 140 **D** 160

C 0,3110

 A_{90}^{232} Th

A 0,1327

B 88^{226} Ra

19. Um núcleo de oxigénio-16 pode ser formado pela junção de 8

Qual é, em u.m.a, o defeito de massa?

protões e 8 neutrões, como mostra a reacção: $8\binom{1}{1}p + 8\binom{1}{0}n \rightarrow \binom{16}{8}O$.

85²¹⁰At

Partícula

Protão

Neutrão

Oxigénio

t(anos)

Massa(uma)

1,00728

1,00867

15,9949

21. Na sequência radioativa: 84 ²¹⁶ M → 82 ²¹² N → 83 ²¹² O → 84 ²¹² P → 82 ²⁰⁸ Q, temos, sucessivame emissões A 10 β 10 β 10 β 24 α C 24 α 10 β 24 α	
B 2 ⁴ α 1 ⁰ β 1 ⁰ β 2 ⁴ α D 2 ⁴ α 2 ⁴ α 1 ⁰ β 1 ⁰ β 22. Na equação, P ₁₅ ³⁰ + α ⇒ Y ₁₆ ³⁴ + X, qual é a partícula representada pela letra X? A H B e ₋₁ ⁰ C e ₊₁ ⁰ D n ₀ ¹ 23. Uma mangueira com uma vazão máxima de 5.10 ⁻⁴ m³/s, é usada para encher um tanque de capacidade 18000 litros. Qual é, em minutos, o tempo gasto para encher totalmente o tanq A 150 B 300 C 400 D 600 24. A água de massa específica ρ=10³ kg/m³, escoa através de um tubo horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d ₁ =10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d ₂ =40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0.10 ⁵ N/m², um gás aumenta seu volume de 8.10 ⁻⁶ m³ para 13.10 ⁻⁶ m³ Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico	1e?
 22. Na equação, P₁₅³⁰ + α ⇒ Y₁₆³⁴ + X, qual é a partícula representada pela letra X? A H₁ B e₋₁ C e₊₁ D n₀ 23. Uma mangueira com uma vazão máxima de 5.10⁻⁴ m³/s, é usada para encher um tanque de capacidade 18000 litros. Qual é, em minutos, o tempo gasto para encher totalmente o tanq A 150 B 300 C 400 D 600 24. A água de massa específica ρ=10³ kg/m³, escoa através de um tubo horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d₁=10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d₂=40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0.10⁵ N/m², um gás aumenta seu volume de 8.10⁻⁶ m³ para 13.10⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico 	1e?
A H ₁ B e ₋₁ C e ₊₁ D n ₀ D n ₀ 23. Uma mangueira com uma vazão máxima de 5.10 ⁻⁴ m ³ /s, é usada para encher um tanque de capacidade 18000 lítros. Qual é, em minutos, o tempo gasto para encher totalmente o tanq A 150 B 300 C 400 D 600 24. A água de massa específica p=10 ³ kg/m ³ , escoa através de um tubo horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d ₁ =10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d ₂ =40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10 ⁵ N/m², um gás aumenta seu volume de 8.10 ⁻⁶ m ³ para 13.10 ⁻⁶ m ³ . Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico	1e? 2
 23. Uma mangueira com uma vazão máxima de 5.10⁻⁴ m³/s, é usada para encher um tanque de capacidade 18000 litros. Qual é, em minutos, o tempo gasto para encher totalmente o tanq A 150 B 300 C 400 D 600 24. A água de massa específica ρ=10³ kg/m³, escoa através de um tubo horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d₁=10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d₂=40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10⁵ N/m², um gás aumenta seu volume de 8.10⁻⁶ m³ para 13.10⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico 	1e?
capacidade 18000 litros. Qual é, em minutos, o tempo gasto para encher totalmente o tanq A 150 B 300 C 400 D 600 24. A água de massa específica ρ=10³ kg/m³, escoa através de um tubo horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d₁-10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d₂=40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. B maior será a sua velocidade. C menor será a sua densidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10⁵ N/m², um gás aumenta seu volume de 8.10⁻6 m³ para 13.10⁻6 m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico	1e?
horizontal representado na figura. No ponto 1, a pressão manométrica vale 4kPa e a velocidade é de 3 m/s. Qual é, em KPa a pressão manométrica no ponto 2, onde a velocidade é de 4m/s? A 0,25 B 0,5 C 2,5 D 3,5 25. Um fluido escoa a 40 m/s através da secção transversal de um tubo horizontal de diâmetro d₁=10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d₂=40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10 ⁵ N/m², um gás aumenta seu volume de 8.10 ⁻⁶ m³ para 13.10 ⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico	2.
d ₁ =10 cm. Qual é a velocidade desse fluido numa secção horizontal do alargamento do tude diâmetro d ₂ =40cm? A 1,5 B 2,5 C 3,0 D 5,0 26. De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. C menor será a sua densidade. B maior será a sua velocidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10 ⁵ N/m², um gás aumenta seu volume de 8.10 ⁻⁶ m³ para 13.10 ⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4	ŀ
 De acordo com a equação da continuidade, quanto menor for a área disponível para o escoamento de um fluido A menor será a sua velocidade. B maior será a sua velocidade. C menor será a sua densidade. D maior será a sua densidade. 27. Em um processo a pressão constante de 2,0 .10⁵ N/m², um gás aumenta seu volume de 8.10⁻⁶ m³ para 13.10⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico 	0
B maior será a sua velocidade. D maior será a sua densidade. Em um processo a pressão constante de 2,0 .10 ⁵ N/m², um gás aumenta seu volume de 8.10 ⁻⁶ m³ para 13.10 ⁻⁶ m³.Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 Uma amostra de gás ideal sofre o processo termodinâmico cíclico	
 27. Em um processo a pressão constante de 2,0 .10⁵ N/m², um gás aumenta seu volume de 8.10⁻⁶ m³ para 13.10⁻⁶ m³. Qual é, em Joules, o trabalho realizado pelo gás? A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico 	
A 1 B 2 C 3 D 4 28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico	
28. Uma amostra de gás ideal sofre o processo termodinâmico cíclico representado no gráfico. Qual é em joules o trabalho realizado polo (P(Pa)	
gás durante o ciclo? A -6 C 4	1 ³)
B -4 D 6	
29. Uma quantidade de um gás ideal sofre uma transformação isocórica. Qual é a alternativa que melhor representa, de forma esquemática, os estados inicial (i) e final (f) do gás em um diagrama PxT (Pressão x Temperatura)?	
The state of the s	
\mathbf{A} \mathbf{B} \mathbf{T} \mathbf{C} \mathbf{D}	Ť
30. Nas transformações gasosas isotérmicas, a	
A temperatura do gás diminui. C energia interna do gás varia.	
B temperatura do gás aumenta. D energia interna do gás não varia. 31. O gráfico da figura representa uma transformação sofrida por uma	
31. O gráfico da figura representa uma transformação sofrida por uma determinada massa de gás. Qual a variação de temperatura entre os estados H e M?	
A 0 B 4 C 10 D 12	

32. Qual deve ser a temperatura de certa quantidade de um gás ideal, inicialmente a 200 K, para que tanto o volume quanto a pressão dupliquem? B 800 2400 A figura representa, num diagrama p-V, uma expansão de um gás p (105N/m2) 33. ideal entre dois estados de equilíbrio termodinâmico, H e L. A quantidade de calor cedida ao gás durante esta expansão foi 5×10³J. Qual é a variação de energia interna do gás nessa expansão? $A 1.10^3$ $\mathbf{C} \quad 3.10^3$ **B** 2.10^3 $D 4.10^3$ 0 2,0 x (m) 34. A figura mostra o MHS executado por um pêndulo em torno da posição de equilíbrio. Qual é, em unidades SI, a frequência 10 angular das oscilações? \mathbf{C} $\pi/10$ $A \pi/4$ $\mathbf{D} \pi/20$ $\mathbf{B} \pi/8$ 35. Um ponto material de massa m = 0.1 kg oscila em torno da posição O0,1 m 0.1 m de equilíbrio, em MHS. A constante elástica da mola é k = 0.4 N/m. Adopte t = 0 quando o móvel se encontra na posição O. **Qual é a** função horária da posição x? \mathbf{C} $x(t) = 0, 1sen\pi t$ A x(t) = 0.2sent $\mathbf{D} x(t) = 0.1\cos \pi t$ **B** x(t) = 0.1sent 36. Um ponto material realiza um MHS sobre um eixo Ox segundo a função horária: $x = 0.4.\cos(2\pi t)$ em unidades SI. Qual é, em m/s, a sua velocidade no instante t= 0,25 segundos? **B** -0.4π 0.8π -0.8π C 0.4π D 37. Um ponto material realiza um MHS de acordo com o gráfico. Quais são, respectivamente, em unidades SI, os valores da amplitude e do período? A 9e6 C 2 | e 9 B 2.e3 **D** ⊔ e 2 38. Uma partícula oscila de acordo com a equação $y(t) = \frac{2}{16\pi^2} sen4\pi t$ (SI). Qual é, em m/s², a sua aceleração máxima? A -8 B -2 C 39. Um oscilador consiste de um bloco com massa 0,25 kg, ligado a uma mola. Quando colocado em oscilação, observa-se que repete o seu movimento a cada 2,5 s. Qual é, em unidades SI, a constante da mola? $0.2\pi^{2}$ $\mathbf{B} = 0.4\pi^2$ C $0.6\pi^2$ A 40. Um pêndulo executa 10 oscilações completas em 9,0 segundos. Qual será, em segundos, o período das oscilações desse pêndulo se quadruplicarmos seu comprimento? 1,8 1,1 **B** 1.2 1,5 **FIM**