A sistematização da ciência geomorfológica nasce com W. M. Davis (1899), nos Estados Unidos, representante da tendência anglo-americana, constituindo a primeira interpretação dinâmica da evolução geral do relevo (ciclo de erosão geográfico). As idéias de Davis foram contesta­das, sobretudo por W. Penck (1924), representante da escola germânica, que culminou na ruptura epistemológica da primeira a partir do Simpósio de Chicago (1939).

A escola anglo-americana pós-davisiana foi marcada por uma tendência fundamentada na Teoria Geral de Sistemas e no processo de quantificação, destacando-se os trabalhos de L.C. King (1955) e J. Hack (1960).

Com o intuito de resgatar a construção do processo histórico do pensamento geomorfológico, apresentam-se as principais teorias ou sistemas que contribuíam para a compreensão do processo evolutivo do relevo.

O Sistema de William M. Davis

O sistema de W.M Davis (1889), fundamentado no conceito de nível de base7 de Powell (1875), sugere que o processo de denudação inicia-se a partir de uma rápida emersão da massa continental. Diante do elevado gradiente produzido pelo soerguimento em relação ao nível de base geral, o sistema fluvial produz forte entalhamento dos talvegues, originando verdadeiros canyons , que caracterizam o estado antropomórfico denominado de juventude . A idéia mais importante é a de que os rios não podem erodir abaixo do seu nível de base. Davis, portanto, se viu obrigado a completar o conceito de nível de base com outro fundamental, o de “equilíbrio”, para o que se utilizou da idéia de balanço entre a erosão e a deposição.

O trabalho comandado pela incisão vertical do sistema fluvial desaparece com o estabelecimento do perfil de equilíbrio8 ( Fig. 1.2 ), quando a denudação inicia o rebaixamento dos interflúvios, marcando o fim da juventude e o começo da maturidade. Alguns escritos em alemão de Davis abordam os possíveis efeitos de levantamento e erosão consecutivos.

O processo denudacional que individualiza a maturidade, para Davis, caracteriza-se pelo rebaixamento do relevo de cima para baixo ( wearing-down : desgastar para baixo), o que torna necessário admitir a continuidade da estabilidade tectônica, bem como dos processos de erosão.

A evolução considerada tende a atingir total horizontali­zação topográfica, estágio denominado de senilidade, quando a morfologia seria representada por extensos “peneplanos”, às vezes interrompidos por formas residuais determinadas por resistência litológica, denominadas monadnocks . Nesse instante haveria pratica­mente um único nível altimétrico entre interflúvios e os antigos fundos de vales (níveis de base), os quais estariam representados por cursos meandrantes (para Davis a meandração significava a senilidade do sistema fluvial), com calhas aluviais inumadas pela redução da capacidade de transporte fluvial.

Para Davis (1899), o relevo, ao atingir o estágio de senilidade, seria submetido a novo soerguimento rápido, que implica­ria nova fase, denominada rejuvenescimento, dando seqüência ao ciclo evolutivo da morfologia.

Conforme Carson & Kirkby (1972), existem duas suposições-chave no sistema descritivo: a primeira é a de que a emersão e a denudação não podem ocorrer concomitantemente, ou seja, a denudação pode somente adquirir alguma importância quando a massa de terra estiver tectonicamente estável. A segunda é a suposição de que os rios sofrem duas fases de atividades: rápida incisão inicial e depois virtual repouso, uma vez atingido o estágio de equilíbrio. A condição de “virtual” repouso significa a continuidade evolutiva, sem assumir o esforço indutivo evidenciado na situação anterior.

Considerações ao sistema ou modelo proposto por Davis têm sido apontadas em ambas as suposições, partindo do princípio de que o processo de soerguimento não pode estar dissociado dos efeitos denudacionais, ou seja, ao mesmo tempo em que o relevo encontra-se em ascensão por esforço tectônico, os processos morfogenéticos estarão atuando. Considerando os resultados de evidências empíricas de que efeitos orogênicos modernos se aproximam de 7,5 metros a cada 1.000 anos, dados apresentados por Tsuboi (1933) para o Japão (valor comparável com as medidas atuais de ajustamento isostásico em áreas recobertas por geleiras pleistocênicas), torna-se inadmissível a idéia da referida dissociação. Também seria improcedente a idéia de uma estabilidade tectônica, da juventude até a senilidade, uma vez que, com base em níveis modernos de erosão, a denudação de aproximadamente 1.500 metros de material requereria, provavelmente, entre 3 a 110 milhões de anos (Schumm, 1963). Para Davis, seriam necessários de 20 a 200 milhões de anos para o aplainamento das cadeias de montanhas, como as falhas de Utah, tempo mais que suficiente para manifestações de natureza tectodinâmi­ca.

A impossibilidade de se admitir estabilidade tectônica absoluta por um período geológico tão prolongado inviabiliza inclusive a idéia de se atingir o referido “virtual repouso”, o que faz supor o estabelecimento do perfil de equilíbrio imaginário. Torna-se difícil admitir a possibilidade de um período de estabilidade tão prolongado para permitir o desenvolvimento do peneplano de Davis, caracterizando uma certa comodidade esquemática. Davis desconsiderou ainda a possibilidade de mudanças climáticas “aciden­tais” no modelo, o que resultaria em deformação no sistema imaginado.

Também o conceito de estágio esboçado por Davis, com base nas idéias de Gilbert (1877), tem sido contestado por geólogos americanos, como Leopoldo & Meddock (1953), que acreditam na existência de estágio relativamente precoce no processo de incisão, sugerindo a mudança na atividade fluvial: de rápida incisão inicial, para o processo de formação de planície aluvial.

O caráter cíclico utilizado por Davis como modelo evolutivo, constitui, no conceito científico geral, estágio embrionário de qualquer natureza do conhecimento.

W.M. Davis, por ser geólogo, fundamen­tou sua análise evolutiva no comportamento estrutural ao longo do tempo, sendo, portanto, o componente responsável pela definição dos diferentes estágios. As variáveis estruturais e temporais individualizam o seu sistema, ficando as considerações processuais num segundo plano; ou seja, a estrutura geológica, quando resistente, se constitui no único controle da forma; o processo erosivo possui relevância quando a litologia favorece e o tempo assume importância no jogo entre as respectivas componentes.

Apesar das críticas relativas ao modelo específico sugerido por Davis, muitos geomorfólogos o aceitam enquanto noção de um sistema evolucionário. Conforme King (1953), “algumas autoridades têm rejeitado todo o conceito cíclico, enquanto outras (…) têm aceitado a idéia usual da existência de um ciclo evolutivo da morfologia processada pelos efeitos erosionais”.

Em síntese, a formulação evolucionista utilizada por Davis é contestada pelo excessivo idealismo, discutível generalização do ciclo e limitação temporal da geodinâmica responsável pelo estágio final do equilíbrio hidrológico. Tais elementos constituíram os pressupostos básicos de sua teoria, a qual implica concepção orgânica do relevo (fases antropomórficas) e ao mesmo tempo uma simplificação do sistema de referência (“hipóteses fundamentais simples” na observação de Leuzinger, 1948). A prática dedutivista (observação, descrição e generalização) e a práxis desligada do resto da Geografia são os principais pontos de contestação pela corrente naturalista da escola germânica, que tem como principais representan­tes, Albrecht e Walther Penck. Para Leuzinger (1948), “na verdade o método aconselhado por Davis não é dedutivo. Ele próprio o denominou de método explicativo ou genético e o qualificou como uma combinação dos métodos dedutivo e indutivo”. O autor explica que o método indutivo aplicado à geomorfologia “consiste em observar e descrever primeiramente, com detalhes e sem idéias preconcebidas, os fatos geomorfológicos tais como eles se apresentam, e estabelecer, somente após, uma hipótese explicativa dos mesmos. No método dedutivo, ao contrário, estabelecem-se em primeiro lugar as formas que se devem derivar das forças que agem na superfície da terra, e verifica-se depois se estas formas coincidem com as existentes”. Davis reunia e analisava o material disponível, induzia a generalizações e hipóteses explicativas, deduzia as conseqüências que derivam de cada hipótese, confrontava essas conseqüências com os fatos, tirando as primeiras conclusões; revelava e aperfeiçoava as explicações concebidas e tirava uma conclusão final sobre as hipóteses que resistissem às refutações, recebendo o nome de teoria. Leuzinger (1948) conclui que “na verdade esse método é indutivo e as deduções que contém destinam-se somente à confirmação das teorias obtidas por indução”. Carson & Kirkby (1972) valorizam a pertinência do modelo davisiano enquanto sistema de referência. Christofoletti (1999, p. 24) destaca o modelo de W.M. Davis expresso na linguagem verbalizada (em palavras e representadas em blocos diagramas), possuindo “todo o contexto de um raciocínio lógico”.

O Sistema de Walther Penck

Conforme foi dito, W. Penck foi um dos principais críticos do sistema de Davis, sobretudo ao afirmar que a emersão e a denudação aconteciam ao mesmo tempo ( Fig. 1.5 ), atribuindo desse modo a devida importância aos efeitos processuais. As críticas de Penck fundamentam-se no método empregado por Davis e na ausência de conexão com a ciência geográfica, uma das principais preocupações da escola germânica.

Para Davis, a denudação (BC) só teria início após o término do soerguimento (AB), enquanto que para Penck a denudação (B´C) é concomitante ao soerguimento (AB´), com intensidade diferenciada pela ação da tectônica.

Penck (1924) procura demonstrar a relação entre entalhamento do talvegue e efeitos denudacionais em função do comportamento da crosta, que poderia se manifestar de forma intermiten­te e com intensidade variável, contestando o modelo apresentado por Davis: rápido soerguimento da crosta com posterior estabilidade tectônica, até que se atingisse a suposta senilidade, quando nova instabilidade proporcionaria a continuidade cíclica da evolução morfológica.

Para Penck, o valor da incisão estava na dependência do grau de soerguimento da crosta, o que proporcionaria evidências morfológicas ou grupos de declividades vinculados à intensidade da erosão dos rios, submetidos aos efeitos tectodinâmicos (Fig. 1.6), conforme exemplos constatados na Floresta Negra (Alema­nha). No primeiro instante (T1 da Fig. 1.6 ) a incisão é relativamente incipiente, compatível com a intensidade do soerguimento; nas demais situações (T2, T3 e T4) é progressivamente maior, refletindo o grau de soerguimento.

Penck (1924) propunha que em caso de forte soerguimento da crosta, ter-se-ia uma correspondente incisão do talvegue, que por sua vez implicaria aceleração dos efeitos denudacionais em razão do aumento do gradiente da vertente. Admitindo-se que o efeito denudacional não acompanhasse de imediato a intensidade do entalhamento do talvegue, ter-se-ia o desenvolvimento de vertentes convexas (Fig. 1.7.1 ). Conclui-se que Penck levou em consideração a noção de nível de base local e a correspondência entre soerguimento, incisão e denudação, valorizando a relação processual, própria da concepção germânica.

Uma segunda situação apresentada por Penck (1924) é a de que, existindo um soerguimento moderado da crosta, com proporcional incisão do talvegue, poderia ocorrer uma compensação equilibrada pelos efeitos denudacionais, proporcionando o desenvolvi­mento de vertentes retilíneas ou manutenção do ângulo de declividade, o que foi denominado por ele de “superfície primária” .

Por último conclui-se que, quando a ascensão da crosta é pequena, ocorre um fraco entalhamento do talvegue, sendo a denudação superior o que propicia o desenvolvimento de vertentes côncavas.

Em suma, enquanto a forma convexa implica período de crescente intensidade de erosão ( Fig. 1.7.1 ), a forma côncava é prova de enfraquecimento erosivo ou de intensidade de erosão decrescen­te.

Penck reconhece a existência de limites para o processo de aceleração ou redução da denudacão da vertente. Particularmen­te na primeira situação, esses limites seriam atribuídos à instabilidade tectônica da crosta.

Para Carson & Kirkby (1972), fica a impressão de que Penck considerou os perfis de declividade como resultantes da movimentação da crosta, o que tem muito a ver com os escritos de Davis. Para os autores, não se opor às idéias de Penck é admitir que o sistema de levantamento-denudação proposto por Davis seja, provavelmente, o mais apropriado na maioria dos casos; se a denudação atual se dá via modelo de peneplanização, é um assunto bem mais duvidoso.

Enquanto Davis afirmava que o relevo evoluía de cima para baixo ( wearing-down , Fig.1.8b ), Penck acreditava no recuo paralelo das vertentes ( wearing-back , ou desgaste lateral da vertente, Fig. 1.8a ), constituindo-se no modelo aceito para o entendimento da evolução morfológica.

Em síntese, a maneira dinâmica da proposta penckiana foi um dos principais argumentos responsáveis pela ruptura epistemológica registrada na linhagem anglo-americana, à época da Segunda Guerra Mundial, até então fielmente adepta das idéias consagradas de Davis.

O Sistema de Lester C. King

A idéia de períodos rápidos e intermitentes de soerguimento da crosta, separados por longos períodos de estabilidade tectônica é o ponto principal do sistema apresentado por King (1955) e Pugh (1955), fundamentado em estudo de caso na África do Sul.

Essa teoria procura restabelecer o conceito de estabilidade tectônica considerado por Davis, mas admite o ajustamento por compensação isostática e considera o recuo paralelo das vertentes ( wearing-back ) como forma de evolução morfológica, de acordo com proposta de Penck (1924).

Os autores argumentam que o recuo acontece a partir de determinado nível de base, iniciado pelo nível de base geral, correspondente ao oceano. O material resultante da erosão decorrente do recuo promove o entalhamento das áreas depressionárias, originando os denominados pedimentos. A evolução do recuo por um período de tempo de relativa estabilidade tectônica permitiria o desenvolvimento de extensos pediplanos, razão pela qual a referida teoria ficou conhecida como pediplanação . Portanto, enquanto Davis chamava as grandes extensões horizontalizadas na senilidade de “peneplanos”, King (1955) as considerava como “pediplanos”, com formas residuais denominadas inselbergs. O emprego de uma das terminologias, peneplano ou pediplano, caracteriza a filiação epistemológica (anglo-americana ou germânica), considerando as diferenciações genéticas ( down wearing ou back wearing ) .

Pugh (1955) admite que a diferença no processo de erosão fornece resultados importantes: há uma reação isostática quase imediata ao abaixamento vertical da paisagem por erosão lateral. Assim, a compensação isostática ocorre somente quando um começo de denudação tenha acontecido, sendo conseqüentemente, um evento intermitente. Uma vez acontecido o reajustamento isostático, uma nova escarpa e um nível de embutimento (nova superfície pediplanada) são formados, justificando a evolução genética para a sucessão de níveis de aplainamento em um mesmo ciclo morfoclimático.

Deve-se considerar,, que, apesar da teoria da pediplanação ter sido originalmente relacionada a um clima úmido, como as demais apresentadas, partindo do princípio que foram produzidas nas regiões temperadas, supõe-se que a horizontalização topográfica esteja vinculada a um clima seco, assim como o desenvol­vimento vertical do relevo encontra-se relacionado a um clima úmido, levando em conta a incisão vertical da drenagem. Assim, a desagregação mecânica seria a grande responsável pelo recuo paralelo das vertentes, e seus detritos, a partir da base em evolução, se estenderiam em direção aos níveis de base, produzindo entulhamento e conseqüente elevação do nível de base local. Esse entulhamento se daria por atividades ou processos torrenciais, originando as formas conhecidas como bajadas e proporcionan­do o mascaramento de toda irregularidade topográfica, caracterizando a morfologia dos pediplanos.

O Sistema de John T. Hack

O autor que mais tem trabalhado no enfoque ací­clico do conceito de “equilíbrio dinâmico” é Hack (1960). Esse conceito fundamenta-se na teoria geral dos sistemas, vinculado à linhagem anglo-americana pós-davisiana.

O princípio básico da teoria é o de que o relevo é um sistema aberto, mantendo constante troca de energia e matéria com os demais sistemas terrestres, estando vinculado à resistência litológica. Enquanto a proposta de Penck considera o modelado como resultado da competição entre o levantamento e a erosão, Hack o considera como produto de uma competição entre a resistência dos materiais da crosta terrestre e o potencial das forças de denudação.

Gilbert (1877) foi o primeiro a tentar explicar a evolução do relevo com base no equilíbrio dinâmico, embora Hack (1957, 1960, 1965) tenha ampliado consideravelmente as idéias iniciais. John T. Hack utilizou-a com o intuito de interpretar a topografia do vale do Shenandoah, na região dos Apalaches, levando em consideração as características das redes de drenagem e das vertentes. “Essa teoria supõe que em um sistema erosivo todos os elementos da topografia estão mutuamente ajustados de modo que eles se modificam na mesma proporção. As formas e os processos encontram-se em estado de estabilidade e podem ser considerados como independentes do tempo. Ela requer um comportamento balanceado entre forças opostas, de maneira que as influências sejam proporcionalmente iguais e que os efeitos contrários se cancelem a fim de produzir o estado de estabilidade, no qual a energia está continuamente entrando e saindo do sistema”.

Toda alternância de energia, seja interna ou externa, promove alteração no sistema, manifestada através da matéria, razão pela qual os elementos da morfologia tendem a se ajustar em função das modificações impostas, seja pelas forças tectodinâmicas, seja pelas alterações processuais subaéreas (mecanismos morfoclimáti­cos). Diante disso, a morfologia não tenderia necessaria­mente para o aplainamento, visto que o equilíbrio pode ocorrer sob os “mais variados panoramas topográficos”

Portanto, para Hack, as formas de relevo e os depósitos superficiais possuem uma íntima relação com a estrutura geológica (litologia) e mecanismos de intemperização, embora deixando transparecer maior valorização da primeira. O autor verificou que a declividade dos canais fluviais diminui com o comprimento do rio e varia em função do material que está sendo escavado. Por exemplo, na bacia de Shenandoah ele observou (1965) que os canais nos arenitos endurecidos possuíam um gradiente aproximadamente dez vezes maior que o dos canais esculpidos nos folhelhos. Assim, o equilíbrio é alcançado quando os diferentes compartimentos de uma paisagem apresentam a mesma intensidade média de erosão.

Enquanto Davis interpreta a uniformidade das cristas da Cordilheira dos Apalaches como resultado de rejuvenescimento de antigo peneplano, Hack a vê como manifestação de uma resistência estrutural igual às forças de erosão

Na teoria do equilíbrio dinâmico as formas não são estáticas. Qualquer alteração no fluxo de energia incidente tende a responder por manifestações no comportamento da matéria, evidenciando alterações morfológicas. Como exemplo, as mudanças climáticas ou eventos tectônicos produzem alterações no fluxo da matéria, até a obtenção de novo reajustamento dos componen­tes do sistema. Algo intrínseco ao argumento de Hack é que o modelado do relevo se adapta rapidamente às variações dos fatores de controle ambiental.

Desse modo, quando o sistema readquire o equilíbrio dinâmico, desaparecem gradativamente as marcas relacionadas às fases anteriores que estavam presentes na paisagem. O referido equilíbrio poderá ser mantido ainda em condições de instabilidade tectodinâmica, desde que os efeitos denudacionais acompanhem o mesmo ritmo, o que já havia sido admitido anterior­mente por Penck (1929).

A noção de equilíbrio, apesar de empregada por Davis para caracterizar uma condição de estabilidade erosiva, como no caso do sistema hidrográfico (noção de perfil de equilíbrio) é considerada por Hack numa perspectiva sistêmica, como o resultado do “com­portamento balanceado entre os processos morfogenéticos e a resistência das rochas, e também leva em consideração as influências diastróficas atuantes na região” (Christofoletti, 1973). Ainda deve-se considerar que os sistemas abertos podem levar à equifina­lização, ou seja, que condições iniciais diferentes podem conduzir a resultados finais semelhantes. Por exemplo, os calcários, resistentes aos processos físicos, podem adquirir, em determinado momento, semelhanças morfológicas a rochas resistentes aos processos químicos.

Diante do exposto, constata-se uma certa relação de dependência entre a proposta de Hack e as teorias discutidas anterior­mente. Além de incorporar o conceito davisiano de equilíbrio em novo estilo, Hack utiliza-se de relações dinâmicas apresentadas por Gilbert (1877) e posteriormente Penck (1924). O mérito atribuído a Hack é o de estruturar um encadeamento lógico na concepção sistêmica do modelado, em detrimento de uma visão fragmentada do relevo.

A tabela 1.1 mostra, em termos comparativos, os principais pontos constantes nos modelos apresentados (Davis, Penck, King e Hack).

Algumas Evidências quanto à Velocidade da Denudação

A relação soerguimento/denudação tem sido até hoje um assunto de muitas controvérsias. Cálculos apresentados por Dole & Stable (1909) indicam valores médios de denudação da ordem de 0,027 a 0,057 metros por mil anos, entendidos como baixos por serem estimados com base, exclusivamente, em materiais em suspensão, transportados por rios, ou cargas sedimentológicas abandonadas pela redução da competência de transporte. Langbein & Schumm (1958) sugerem níveis de denudação ligeiramente mais altos, em torno de 0,03 a 0,1 metro por mil anos.

Os níveis mais altos de produção de sedimentos foram registrados pela Federal Inter-Agency River Basin Comission (1953), em um pequeno reservatório em Iowa, correspondente a uma denu­dação de 12,6 metros/1000 anos ( Tab. 1.2 ).

Médias experimentais, realizadas em áreas montanhosas, demonstram níveis da ordem de 0,6 a 0,9 m/1000 anos, estimadas por Wegmann (1955), nos Alpes do norte, e Khosle (1953), em parte do Himalaia.

Estimativas de taxas de denudação a partir de estudos experimentais em bacias hidrográficas (Dole & Stabler, 1909, Langbein & Schumm, 1953, 1958, Faxman & High, 1955 e Fed. InterAgency River Basin Comission , 1953; apud Carson & Kirkby, 1972), demonstram variações da ordem de 0,03 a 12,6 metros/1.000 metros ( Tab . 1.2 ). Estudos realizados em áreas tectonicamente ativas (Gilluly, 1949, Stone , 1961, Tsuboi, 1933, Less, 1955, Gutenberg, 1941, Cailleux, 1952, apud Schumm, 1963) estimam soerguimentos da ordem de 0,1 a 75,0 metros/1.000 anos ( Tab. 1.3 ), demonstrando que os soerguimentos orogênicos são significativa­mente maiores que as taxas de denudação. Com base nessas premis­sas, parece bastante improvável que massas de terras poderiam ser produzidas ou emersas, independente do tempo, como estimadas por Penck (1924) e Hack (1960). Para Carson & Kirkby (1972), esta diferença entre níveis modernos de orogenia e denudação levam a admitir a validade do sistema de Davis, considerando rápido soerguimento de cadeias de montanhas, com pequenas modificações por erosão, até que a orogenia cesse.

Em síntese, torna-se muito difícil comprovar a refe­rida relação, visto que ao mesmo tempo em que os valores apresentados por Schumm (1963), concernentes às estimativas de níveis de levantamentos, encontram-se associados aos níveis modernos de orogenia para o entendimento do passado geológico, também os níveis modernos de denudação encontram-se alterados pelas derivações antropogênicas, em franca expansão.

As forças internas não só se referem ao processo de soerguimento e denudação, como interferem diretamente na disposição es­trutural das rochas, com repercussão em seu comportamento químico ou em sua propriedade física. Portanto, as forças endógenas implicam comportamento estrutural das rochas, as quais se manifestam de modo diferente frente aos processos erosivos,

Tab. 1.2 – Estimativas de Níveis de Denudação em Bacias de Drena­gem*

Bacia de Drenagem

 

(em 1000 km2)

Níveis de Denu­dação

 

(metros/1000 anos)

Fonte
372,28

 

3,9

0,08

0,003

 

0,0003

0,03-0,06

 

0,03-0,10

0,06-0,22

2,55

 

12,6

Dole & Stabler, 1909

 

Langbein & Schum­m, 1953

Langbein & Schum­m, 1958

Flaxman & High, 1955

Fed. InterAgency River

Basin Com., 1953.

Tab. 1.3 – Estimativas de níveis de levanta­mento em con­dições: a) Orogênica; b) Isostática; e c) Epirogênica*

Localização Levantamento

 

(metros/1000 anos)

Fonte
Califórnia

 

Sul da Califórnia

a) Japão

Golfo Pérsico

 

Ontário do Sul

b) Fenoescandinávia

 

c)

4,8-12,6

 

3,9 -6,0

0,8-75,0

3,0

 

 

4,0

10,8

0,1-3,6

Gilluly, 1949

 

Stone, 1961

Tsuboi, 1933

Less, 1955

 

Gutenberg, 1941

Gutenberg, 1941

 

Cailleux, 1952

Deve-se observar que a estrutura geológica apresenta­rá comportamento diferente segundo condições climáticas, permitin­do maior ou menor intensidade denudacio­nal. O quartzito, por exemplo, apresenta maior resistência ao intemperismo químico (clima úmido) se comparado à sua reação frente à ação morfogenética mecânica (clima seco), num comportamento oposto ao dos arenitos e calcários.

É dessa relação rocha-clima, sem desconsiderar os ajustamentos tectogênicos, que se produzi­rá maior ou menor concentração de material em áreas deposicionais, o que responderá, numa escala do tempo geológico, em maior ou menor reação das forças internas, como os ajustamentos isostáticos.

Assim sendo, é necessário entender o relevo como algo dinâmico, em constante evolução, muito embora certas relações ou resultados não possam ser observados na escala de tempo histórica.

O fato de se ter atribuído maior importância a um dos elementos, estruturais ou climáticos, em detrimento do outro, deu motivo ao emprego de adjetivos como “geomorfologia estrutu­ral” ou “geomorfologia climática”, fruto de tendências associadas a linhagens epistemológicas. Conforme observou Cholley (1950), não há duas geomorfologias, mas apenas uma, e sua gênese está ligada à ação de fatores erosivos associados ao clima, que constitui um complexo de agentes denominado pelo autor de “sistema de erosão” que cada clima coloca em evidência. Para Cholley (1950), o reflexo da estrutura ou do clima no comportamento morfológico caracteriza estágios que confirmam os conceitos davisianos: a erosão “normal”, ao colocar em evidência a estrutura, corresponderia a uma fase de “maturidade”, enquanto o esmorecimento da erosão demonstra a última etapa da evolução morfológica, caracterizando uma fase “senil”.

É natural que determinadas formas específicas demons­trem as conseqüências ou reflexos da estrutura, ainda que em outras formas essa estrutura se encontre mascarada pelos processos erosivos. Esse fato pode ser diferenciado pela própria escala da observação: nas imagens de satélite ou radar, em escala média de 1:100.000 a 1:250.000, a estrutura se mostra como elemento individualizador da morfologia. Uma análise mais detalhada, em maior escala (maior que 1:50.000), de determinados elementos do relevo, como uma vertente, revela que a estrutura normalmente se encontra mascarada pelos depósitos de cobertura, comandados pelos processos morfogenéticos pretéritos ou atuais.

A estrutura é algumas vezes insuficiente, mesmo no domínio da erosão “normal”, para em xplicar todas as formas. Por outro lado, deve-se considerar que dificilmente seria possível entender a relação da “contextura” e composição química da rocha na individualização estrutural, se não se levasse em conta a ação dos mecanismos externos. A compreensão do significado do clima na elaboração de toda e qualquer morfologia explica o êxito da expressão “morfologia climática”, que de alguma forma marca a reação à atitude dos geógrafos que fizeram da estrutura o princípio de toda morfologia.

O comportamento morfológico, numa escala de tempo geológico, se manifesta por meio da ação dos mecanismos externos e da reação da estrutura, admitindo a participação das forças internas (tectodinâmicas). A partir do capítulo seguinte serão analisados os efeitos do jogo de forças contrárias para a necessária compreensão do processo evolutivo do relevo.

Apresentam-se a seguir os níveis de abordagem geomorfológica sistematizados por Ab´Sáber (1969), que representam a estrutura metodológica do presente trabalho.

 

Referências Bibliográficas

Abreu, A.A. de. Análise geomorfológica: reflexão e aplicação. Tese de Livre Docência. FFLCH-USP. S. Paulo, 1982.

Abreu, A.A. de. A Teoria Geomorfológica e sua Edificação: Análise crítica. Rev. IG, São Paulo, v. 4, n. 1-2, p. 5-23, jan./dez., 1983.

Abreu, A.A. Significado e Propriedades do Relevo na Organização do Espaço. In: Anais do Simpósio de Geografia Física Aplicada 1, B. Geogr. Teorética, Rio Claro, v. 15, n. 29-30, 154-162, 1985.

Ab´Sáber, A. N. Um conceito de geomorfologia a serviço das pesquisas sobre o Quaternário. Geomorfologia. n. 18, IG-USP, S. Paulo, 1969.