Introdução
A termodinâmica é o ramo da física que estuda as relações de troca entre o calor e o trabalho realizado na transformação de um sistema físico, quando esse interage com o meio externo. Ou seja, ela estuda como a variação da temperatura, da pressão e do volume interfere nos sistemas físicos. O estudo e o desenvolvimento da termodinâmica surgiram da necessidade de criar máquinas e de aumentar a eficiência das máquinas existentes naquela época, as máquinas a vapor.
O estudo desse ramo parte das Leis da Termodinâmica, leis essas que postulam que a energia pode ser transferida de um sistema para outro na forma de calor ou trabalho. E ainda postulam a existência de uma quantidade denominada deentropia, a qual pode ser determinada para todos os sistemas.
A termodinâmica teve início em 1650, com Otto Von Guericke. Ele foi o responsável pela criação da primeira bomba a vácuo do mundo, além de criar o primeiro vácuo artificial através das esferas de Magduberg. Anos mais tarde Robert Boyle ficou sabendo dos experimentos de Otto, e em parceria com Robert Hooke, construiu uma bomba de ar. Através dessa bomba, Boyle e Hooke perceberam a relação entre pressão, volume e temperatura, e através dessa descoberta Boyle formulou uma lei que estabelece que a pressão e o volume são inversamente proporcionais.
Essa lei ficou conhecida como Lei de Boyle. Estudos posteriores, baseados nos conceitos de pressão, temperatura e volume, fizeram por surgir a primeira máquina a vapor, com Thomas Savery. As máquinas daquela época eram muito grandes e robustas, mas atraíam a atenção de muitos cientistas, como foi o caso de Sadi Carnot. Denominado de o “pai da termodinâmica” em 1824 fez a publicação de “Reflexões sobre a Potência Motriz do Fogo”, nessa sua publicação ele fazia um discurso sobre o calor, a eficiência e a potência das máquinas a vapor. Esse fato marcou o início da Termodinâmica como ciência moderna.
Termodinâmica
A termodinâmica (do grego θερμη, therme, significa “calor” e δυναμις, dynamis, significa “potência”) é o ramo da física que estuda as causas e os efeitos de mudanças na temperatura, pressão e volume – e de outras grandezas termodinâmicas fundamentais em casos menos gerais – em sistemas físicos em escala macroscópica. Grosso modo, calor significa “energia” em trânsito, e dinâmica se relaciona com “movimento”. Por isso, em essência, a termodinâmica estuda o movimento da energia e como a energia cria movimento. Historicamente, a termodinâmica se desenvolveu pela necessidade de aumentar-se a eficiência das primeiras máquinas a vapor, sendo em essência uma ciência experimental, que diz respeito apenas a propriedades macroscópicas ou de grande escala da matéria e energia.
Considerações históricas
A breve história da termodinâmica começa com Guericke, que em 1650 projetou e construiu a primeira bomba de vácuo do mundo, e o primeiro vácuo artificial do mundo, através dos hemisférios de Magdeburgo. Ele foi incentivado pela busca em provar a invalidade da antiga percepção de que “a natureza tem horror ao vácuo” e de que não poderia haver vazio ou vácuo, “pois no vácuo todos os corpos cairiam com a mesma velocidade” tal como descreveu em ambos os casos Aristóteles.
Logo após este evento, o físico e químico irlandês Robert Boyle tomou ciência dos experimentos de Guericke, e em 1656, em coordenação com o cientista inglês Robert Hooke, construiu uma bomba de ar. Usando esta bomba, Boyle e Hooke perceberam uma correlação entre pressão, temperatura e volume. Com isso foi formulada a Lei de Boyle, a qual estabelece que a pressão e o volume são inversamente proporcionais. Então, em 1679, baseado nestes conceitos, um conhecido de Boyle chamado Denis Papin construiu um forno de pressão (marmita de Papin), que era um vaso fechado com uma tampa fechada hermeticamente que confinava o vapor até alta pressão ser gerada.
Projectos posteriores incluíram uma válvula de alívio para o vapor, evitando que o recipiente explodisse devido à alta pressão. Observando o movimento rítmico da válvula de alívio para cima e para baixo, Papin concebeu a ideia de uma máquina constituída de um pistão e um cilindro.
Mas Papin não seguiu adiante com a ideia. Foi somente em 1697, baseado nas idéias de Papin, que o engenheiro Thomas Savery construiu a primeira máquina a vapor. Embora nesta época as máquinas fossem brutas e ineficientes, elas atraíram a atenção dos principais cientistas da época. Um destes cientistas foi Sadi Carnot, o “pai da termodinâmica”, que em 1824 publicou “Reflexões sobre a Potência Motriz do Fogo”, um discurso sobre o calor, potência e eficiência de máquina. O texto trouxe as relações energéticas básicas entre a máquina de Carnot, o ciclo de Carnot e a potência motriz. Isto marcou o início da termodinâmica como ciência moderna
Transformações e processos
Existem dois tipos fundamentais de entidade em termodinâmica, estados de um sistema, e os processos de um sistema. Isto permite três abordagens fundamentais para raciocínio termodinâmico: em termos de estados de equilíbrio termodinâmico do sistema, em termos de tempo invariantes processos de um sistema e em termos de processos cíclicos de um sistema.
Sempre que duas ou mais propriedades de um sistema variam, diz-se que ocorreu um processo. Sempre que há mudança entre estados de equilíbrio há um processo. Um processo é geralmente descrito por um diagrama identificando os sucessivos estados pelo qual passa o sistema durante o transcurso do mesmo.
Um processo de quase-equilíbrio (quase-estático) é aquele em que o desvio do equilíbrio termodinâmicoao ir-se de um estado de equilíbrio ao subsequente é infinitesimal, de forma que o sistema pode ser considerado a qualquer momento como estando em um dos estados de equilíbrio. Assim um processo quase estático se aproxima muito de uma sucessão de estados de equilíbrio, e tais processos têm diagramas representativos descritos por linhas, e não por pontos não intercalados, em um diagrama de estados.
Muitos processos reais, geralmente os processos lentos, podem ser considerados com razoável precisão como sendo processos de quase-equilíbrio. Vários outros – entre os quais os processos que ocorrem de forma brusca – não. O termo “transformação” é normalmente utilizado para referenciar um processo quase-estático.
Abordagem e exemplos
A abordagem através de estados de equilíbrio termodinâmico do sistema requer um relato completo do estado do sistema, bem como a noção de processo a partir de um estado para outro de um sistema, mas pode necessitar de apenas uma conta idealizada ou parcial, do estado do entorno do sistema ou de outros sistemas.
O método de descrição em termos de estados de equilíbrio termodinâmico tem limitações. Por exemplo, os processos em uma região de fluxo turbulento, ou numa mistura de gás de queima, ou de um gás pode ser além Knudsen “da província de termodinâmica”.2 3 Este problema pode ser contornado por vezes através do método da descrição, em termos de processos cíclicos ou de tempo invariantes de fluxo. Esta é parte da razão pela qual os fundadores da termodinâmica muitas vezes preferiram a descrição do processo cíclico.
Aproximações através de processos de invariante no tempo de fluxo de um sistema são utilizadas para alguns estudos. Alguns processos, por exemplo, a expansão de Joule-Thomson, são estudados por meio de fluxo estacionário de experiências, mas pode ser explicado por distinguir a energia cinética do fluxo contínuo a granel a partir da energia interna e, assim, podem ser consideradas como dentro do âmbito da termodinâmica clássica definidos em termos de estados de equilíbrio ou de processos cíclicos.
Outros processos de fluxo, por exemplo, efeitos termoeléctrico, são essencialmente definidos pela presença de fluxos diferenciais ou de difusão de modo que eles não podem ser adequadamente avaliados em termos de estados de equilíbrio ou processos cíclicos clássicos.
A noção de um processo cíclico não requer uma conta completa do estado do sistema, mas requer um relato completo de como ocasiões em que o processo de transferências de matéria e energia entre o sistema principal (que é muitas vezes chamado de corpo de trabalho) e sua ambiente, devem incluir, pelo menos, dois reservatórios de calor em diferentes temperaturas conhecidas e fixas, uma temperatura superior a do sistema principal e uma mais fria do que o outro, assim como um reservatório, que pode receber a energia do sistema como o trabalho e pode fazer o trabalho do sistema.
Os reservatórios podem, alternativamente, ser considerados como sistemas de componentes auxiliares idealizados, a par do sistema principal. Assim, uma consideração em termos de processos cíclicos requer pelo menos quatro sistemas de componentes contributivos. As variáveis independentes desta conta são as quantidades de energia que entram e saem dos sistemas idealizados auxiliares.
Neste tipo de conta, o corpo de trabalho é muitas vezes considerado como uma “caixa preta”, e seu próprio estado não é especificado. Nesta abordagem, a noção de uma escala numérica de temperatura adequada empírica é um pressuposto da termodinâmica, e não uma noção construída por ela ou derivados dela.
Equação de estado
As variáveis macroscópicas de um sistema termodinâmico em equilíbrio termodinâmico, em que a temperatura está bem definida, pode ser relacionado com um outro por meio de equações de equações de estado ou característica. E expressam as peculiaridades constitutivas o material do sistema. A equação de estado deve cumprir com algumas restrições termodinâmicas, mas não pode ser derivada a partir dos princípios gerais da termodinâmica sozinhos.
Os processos termodinâmicos entre os estados de equilíbrio termodinâmico
Um processo termodinâmico é definido por mudanças de estado interno do sistema de interesse, juntamente com a transferência de matéria e de energia ao ambiente do sistema ou a outros sistemas. Um sistema é demarcado do seu ambiente ou de outros sistemas, por divisórias que mais ou menos separadas, podem mover-se como um êmbolo para alterar o volume do sistema e, portanto, transferir o trabalho.
As variáveis dependentes e independentes para um processo
Um processo é descrito por mudanças nos valores das variáveis de estado dos sistemas ou por quantidades de troca de matéria e energia entre sistemas e ambientes. A mudança deve ser especificada em termos de variáveis prescritas. A escolha de quais variáveis que devem ser usadas é feita antes da análise do decurso do processo, e não pode ser alterada. Algumas das variáveis escolhidas com antecedência são chamadas de variáveis independentes.
A partir de alterações em variáveis independentes podem ser derivadas mudanças em outras variáveis chamadas variáveis dependentes. Por exemplo, um processo pode ocorrer a uma pressão constante com pressão prescrita como uma variável independente, e temperatura alterada como uma outra variável independente, e, em seguida, as variações de volume são consideradas como dependentes. Atenção a este princípio, é necessário em termodinâmica.
Os processos termodinâmicos comumente considerados
É muitas vezes conveniente para estudar um processo termodinâmico, em que uma única variável, tal como a temperatura, a pressão ou o volume, etc, é mantido fixo. Além disso, é útil agrupar estes processos em pares, em que cada variável é mantida constante como um membro de um par conjugado. Vários processos termodinâmicos comumente estudados são:
- Processo isobárico: ocorre a pressão constante
- Processo isocórico: ocorre a volume constante (também chamado isométrica / isovolumétrico)
- Processo isotérmico: ocorre a uma temperatura constante
- Processo adiabático: ocorre sem perda ou ganho de energia como calor
Processo isentrópico: um processo reversível adiabático ocorre a uma entropia constante, mas é uma idealização de ficção. Conceitualmente, é possível realizar fisicamente um processo que mantém a entropia do sistema constante, permitindo a remoção sistemática controlada de calor, por condução para um corpo mais frio, para compensar a entropia produzida dentro do sistema de trabalho feito irreversível no sistema. Tal conduta isentrópica de um processo chamado parece para quando a entropia do sistema é considerada como uma variável independente, por exemplo, quando a energia interna é considerada como uma função da entropia e volume do sistema, as variáveis naturais da energia interna como estudado por Gibbs.
Processo Isentálpico: ocorre a uma entalpia constante
Processo isolado: nenhuma matéria ou energia (nem como trabalho nem na forma de calor) é transferido para dentro ou para fora do sistema
Por vezes, é de interesse para o estudo de um processo no qual uma série de variáveis são controladas, sujeitas a alguma restrição especificada. Num sistema em que uma reação química pode ocorrer, por exemplo, em que a pressão e a temperatura podem afetar a composição de equilíbrio, um processo pode ocorrer em que a temperatura é mantida constante, mas a pressão é lentamente alterada, de modo que apenas o equilíbrio químico é mantido a forma. Há um processo correspondente a uma temperatura constante em que a pressão final é a mesma, mas é atingida por um salto rápido. Em seguida, pode-se mostrar que a variação do volume resultante do processo de salto rápido é menor do que a partir do processo de equilíbrio lentos.
Princípios da termodinâmica
Princípio zero: entrando em equilíbrio
O princípio básico sobre o qual a termodinâmica se assenta é Nota 4 : dado um sistema isolado – envolto por uma fronteira completamente restritiva em relação à troca de energia ou matéria – haverá um estado em particular, caracterizado pela constância de todas as grandezas termodinâmicas mensuráveis (temperatura, pressões parciais, volume das fases, etc.), que, uma vez dado tempo suficiente para as transformações necessárias ocorrerem, sempre será atingido.
Os valores a serem assumidos pelas grandezas no estado de equilíbrio encontram-se univocamente determinados desde o estabelecimento da fronteira e do sistema, dependendo estes, em sistemas simples, apenas do número e natureza das partículas, do volume e da energia interna encerrados no sistema. Tal estado final de equilíbrio do sistema é nomeado estado de equilíbrio termodinâmico. A rigor define-se temperatura apenas para o estado de equilíbrio termodinâmico, não se definindo em princípio a mesma grandeza para sistemas fora do equilíbrio.
O princípio zero ainda engloba o raciocínio de que, se dois sistemas A e B – cada qual já em seu respectivo estado de equilíbrio – forem colocados um a um em contato de forma adequada com um sistema C, e verificar-se experimentalmente que estes mantiveram os respectivos estados de equilíbrio originais, estes estarão não apenas em equilíbrio com C mas também estarão em equilíbrio entre si, de forma que também manterão seus respectivos estados de equilíbrio originais se colocados em contato mediante fronteira semelhante.
Considera-se para tal geralmente uma fronteira não restritiva apenas quanto à troca de calor, caso em que se fala em equilíbrio térmico . Tal princípio implica, pois: se a temperatura de A e B são iguais à de C, as temperaturas de A e B serão também necessariamente iguais. Se a fronteira não for restritiva quanto à troca de energia em qualquer de suas formas – calor ou trabalho – mas o for ainda em relação à troca de matéria, falar-se-á em equilíbrio térmico e mecânico.
Neste caso, não somente suas temperaturas mas também suas pressões serão iguais. Se a fronteira for completamente irrestritiva, permitindo inclusive a troca de matéria e reações químicas, falar-se-á em equilíbrio térmico, mecânico e (eletro) químico, ou seja, emequilíbrio termodinâmico
Princípio primeiro: conservando a energia
Observação: a compreensão do que se segue exige o conhecimento das definições de: energia, energia interna, energia térmica, temperatura (absoluta), energia potencial, pressão, volume, calor e trabalho. Solicita-se a leitura dos artigos específicos caso estes conceitos não se mostrem familiares.
De acordo com o princípio da Conservação da Energia, a energia não pode ser criada nem destruída, mas somente transformada de uma espécie em outra. O primeiro princípio da termodinâmica estabelece uma equivalência entre o trabalho e o calor trocados entre um sistema e seu meio exterior no que se refira à variação da energia interna do sistema.
Considere um sistema e sua vizinhança, em uma situação tal que uma certa quantidade de calor Q tenha atravessado a fronteira comum aos dois (devido à diferença de temperaturas entre ambos). Considere também que a fronteira comum entre os sistemas se mova neste processo, implicando em energia trocada na forma de trabalho entre ambos. Neste caso a variação na energia interna do sistema em foco é expressa por:
A expressão acima representa analiticamente o primeiro princípio da termodinâmica, cujo enunciado pode ser:
“a variação da energia interna de um sistema é igual à diferença entre o calor e o trabalho trocados pelo sistema com o meio exterior.”
Considerando-se para fins ilustrativos um sistema composto por um gás com apenas movimentos translacionais (isso é, monoatômico) e sem interação potencial entre partículas, a variação de energia interna pode ser determinada por onde n é o número de mols do gás, R é a constante dos gases, a temperatura final e a temperatura inicial do gás.
Repare que para um gás ideal a variação em sua energia interna está associada apenas à variação em sua temperatura. Transformações isotérmicas envolvendo um gás ideal implicam portanto que o trabalho W realizado pelo sistema sobre a vizinhança iguala-se em módulo ao calor que entra no sistema oriundo da vizinhança.
Para a aplicação do primeiro princípio de termodinâmica devem-se respeitar as seguintes convenções:
- Q > 0: calor é recebido pelo sistema oriundo de sua vizinhança.
- Q < 0: calor cedido pelo sistema à vizinhança.
- W > 0: volume do sistema aumenta; o sistema realiza trabalho sobre a vizinhança (cujo volume diminui).
- W < 0: volume do sistema diminui; o sistema recebe energia na forma de trabalho oriunda de sua vizinhança (cujo volume aumenta).
- 0: a energia interna do sistema aumenta.
- < 0: a energia interna do sistema diminui.
É muito comum associar-se de forma errônea o aumento da energia interna em um sistema a um aumento em sua temperatura. Embora esta relação mostre-se verdadeira para a maioria dos sistemas, ao rigor da análise esta associação não procede. Alguns exemplos bem simples, como a combustão de vapor de gasolina e oxigênio em um cilindro de automóvel – que por ser muito rápida, pode ser considerada um processoadiabático – ou uma simples mistura de sal e gelo, mostram que não há uma relação estrita entre energia interna e temperatura, mas sim entre energia térmica e temperatura.
A transformação que leva o sistema termodinâmico do estadoA até o estado B é isobárica.
Na combustão do vapor de gasolina e oxigénio formam-se vapor de água e gás carbónico que, ao fim, estão em temperatura muito maior do que a temperatura dos reagentes. Contudo a energia interna do sistema não varia. O que ocorre é a transformação de parte da energia potencial – uma das parcelas que integram a energia interna – do sistema em energia térmica, a outra parcela que a integra. Como o aumento na energia térmica é inteiramente oriundo da diminuição da energia potencial (energia química) do sistema, a energia interna permanece a mesma, e não há variação na energia interna do sistema, mesmo observando-se um enorme aumento em sua temperatura.
Caso contrário é observado em um sistema composto por gelo e sal mantidos separados. Removendo-se a fronteira que os separa, a temperatura da mistura salina que se forma cai drasticamente, contudo a energia interna do sistema, assumido envolto por uma fronteira completamente restritiva (um sistema isolado), permanece constante.
Parte da energia térmica é utilizada para romper-se as ligações iônicas associada à forma cristalina do sal – liquefazendo a mistura – e transformando-se por tal em energia potencial. O decréscimo na energia térmica é contudo compensado pelo acréscimo na energia potencial, de forma que a energia interna – conforme exigido pela fronteira restritiva – não varia, embora a temperatura caia substancialmente.
Podemos dizer que a energia interna do sistema é uma função de estado pois ela depende unicamente dos valores assumidos pelas variáveis de estado do sistema, e não da forma como tais variáveis assumiram tais valores. Em outras palavras, a energia interna de uma xícara de café quente com mesma composição química, mesma concentração, mesma massa, quando submetida à mesma pressão, volume e temperatura, será sempre a mesma, independente de como se fez o café, ou se este foi feito agora, ou requentado.
Repare que a energia interna é função apenas da temperatura somente para casos especiais, como o caso do gás ideal. Para casos genéricos não pode-se assumir tal conjectura como verdadeira. A energia interna pode depender da pressão, do volume, e de qualquer outra grandeza termodinâmica de forma explícita.
Quanto ao trabalho realizado pelo sistema sobre sua vizinhança, este pode ser facilmente determinado em transformações isobáricas – aquelas nas quais a pressão permanece constante – por:
Onde V2 e V1 representam os volumes final e inicial do sistema, respectivamente. Repare a convenção a origem da convenção de sinais: quando o gás realiza trabalho sobre o meio – expandindo-se contra a pressão imposta pelo mesmo e gastando parte de sua energia interna para tal – o sinal do trabalho é positivo (volume aumenta), o qual, substituído na expressão matemática do primeiro princípio, implica um decréscimo da energia interna do sistema em virtude do sinal negativo presente nesta última expressão.
Em casos mais complexos, o trabalho pode ser determinado através de um diagrama de pressão x volume para a transformação sofrida. Este corresponde à área sob a região determinada pelos estados inicial, final, e pela curva associada (vide figuras abaixo).
Princípio segundo: uma passagem só de ida
A termodinâmica permite determinar a direcção na qual vários processos físicos e químicos irão ocorrer espontaneamente, e as condições para que possam ser revertidos (reversibilidade). Permite também determinar quais processos podem ocorrer, e quais não podem (irreversibilidade).
Também permite determinar as interrelações entre as diversas propriedades de uma substância, a exemplo calor específico, coeficiente de dilatação volumétrica, compressibilidade, e demais. Contudo ela não encerra em sua descrição macroscópica dados relativos aos modelos da microestrutura da substância, e não é capaz de fornecer detalhes dela partindo-se apenas das grandezas macroscópicas.
Contudo, uma vez que a estrutura microscópica do sistema seja previamente conhecida, através do método da termodinâmica clássica e estatística, as propriedades e o comportamento termodinâmicos do sistema podem ser em princípio facilmente determinados.
A 2ª Lei da termodinâmica estabelece portanto uma seta para o tempo: estabelece em essência a possibilidade de se definir com precisão uma ordem cronológica para uma série de eventos relacionados. Estabelece que energia cinética macroscopicamente mensurável pode sempre reduzir-se, mediante trabalho, a calor, e desta forma acabar fazendo parte das entranhas de um sistema termodinâmico – ou seja, da energia interna deste – contudo o processo inverso jamais ocorre com rendimento de 100%.
Calor oriundo da energia interna de um sistema não pode ser totalmente convertido em trabalho, e por tal jamais é completamente convertido em energia cinética macroscopicamente mensurável. Decorre desta certamente considerações estimulantes tanto de ordem filosófica como de ordem científica ligadas às implicações da mesma, a exemplo considerações sobre a possível morte térmica do universo.
Leis da termodinâmica
A termodinâmica é baseada em leis estabelecidas experimentalmente:
A Lei Zero da Termodinâmica determina que, quando dois sistemas em equilíbrio termodinâmico têm igualdade de temperatura com um terceiro sistema também em equilíbrio, eles têm igualdade de temperatura entre si. Esta lei é a base empírica para a medição de temperatura.
Ela também estabelece o que vem a ser um sistema em equilíbrio termodinâmico: dado tempo suficiente, um sistema isolado atingirá um estado final – o estado de equilíbrio termodinâmico – onde nenhuma transformação macroscópica será doravante observada, caracterizando-se este por uma homogeneidade das grandezas termodinâmicas ao longo de todo o sistema (temperatura, pressão, volumes parciais, constantes).
A Primeira Lei da Termodinâmica fornece o aspecto quantitativo de processos de conversão de energia. É o princípio da conservação da energia e da conservação da massa, agora familiar, : “A energia do Universo, sistema mais vizinhança, é constante”.
A Segunda Lei da Termodinâmica determina de forma quantitativa a viabilidade de processos em sistemas físicos no que se refere à possibilidade de troca de energia e à ocorrência ou não destes processos na natureza. Afirma que há processos que ocorrem numa certa direcção mas não podem ocorrer na direcção oposta. Foi enunciada por Clausius da seguinte maneira: “A entropia do Universo, [sistema mais vizinhança], tende a um máximo”: somente processos que levem a um aumento, ou quando muito à manutenção, da entropia total do sistema mais vizinhança são observados na natureza. Em sistemas isolados, transformações que impliquem uma diminuição em sua entropia jamais ocorrerão.
A Terceira Lei da Termodinâmica estabelece um ponto de referência absoluto para a determinação da entropia, representado pelo estado derradeiro de ordem molecular máxima e mínima energia. Enunciada como “A entropia de uma substância cristalina pura na temperatura zero absoluto é zero”.
Conclusão
Chegou-se a conclusão de que em sistemas adiabáticos determinados processos ocorrem em sentido único, sendo impossível, sem violar-se a restrição adiabática imposta pela barreira, regressar-se ao estado original.
Associado à irreversibilidade de tais processos tem-se a segunda lei da termodinâmica: em processos adiabáticos, a entropia do sistema permanece constante ou aumenta, contudo nunca diminui.
Se um processo qualquer geralmente processos bruscos, como a expansão livre implicar em aumento da entropia do sistema, o estado inicial de menor entropia torna-se inacessível ao sistema sem violação da restrição imposta. Após uma expansão livre não se consegue mais retornar às mesmas condições de pressão, volume e temperatura iniciais sem a violação da fronteira adiabática do sistema.
Bibliografia
Álvares, Beatriz Alvarenga; Luz, António Máximo Ribeiro. Física, Ensino Médio – Vol. 2. [S.l.]: Editora Scipione, 2009.